Breaking News

BIO CHEMISTRY MCQs


BIO CHEMISTRY MCQs

 









1. Neonatal tyrosinemia improves on administration of

  • (A) Thiamin
  • (B) Riboflavin
  • (C) Pyridoxine
  • (D) Ascorbic acid

2. Absence of phenylalanine hydroxylase causes

  • (A) Neonatal tyrosinemia
  • (B) Phenylketonuria
  • (C) Primary hyperoxaluria
  • (D) Albinism

3. Richner-Hanhart syndrome is due to defect in

  • (A) Tyrosinase
  • (B) Phenylalanine hydroxylase
  • (C) Hepatic tyrosine transaminase
  • (D) Fumarylacetoacetate hydrolase

4. Plasma tyrosine level in Richner-Hanhart syndrome is

  •  (A) 1–2 mg/dL
  • (B) 2–3 mg/dL
  • (C) 4–5 mg/dL
  • (D) 8–10 mg/dL

 5. Amount of phenylacetic acid excreted in the urine in phenylketonuria is

  • (A) 100–200 mg/dL
  • (B) 200–280 mg/dL
  • (C) 290–550 mg/dL
  • (D) 600–750 mg/dL

 6. Tyrosinosis is due to defect in the enzyme:

  • (A) Fumarylacetoacetate hydrolase
  • (B) p-Hydroxyphenylpyruvate hydroxylase
  • (C) Tyrosine transaminase
  • (D) Tyrosine hydroxylase

7. An important finding in Histidinemia is

  • (A) Impairment of conversion of α-Glutamate to α-ketoglutarate
  • (B) Speech defect
  • (C) Decreased urinary histidine level
  • (D) Patients can not be treated by diet

8. An important finding in glycinuria is

  • (A) Excess excretion of oxalate in the urine
  • (B) Deficiency of enzyme glycinase
  • (C) Significantly increased serum glycine level
  • (D) Defect in renal tubular reabsorption of glycine

9. Increased urinary indole acetic acid is diagnostic of

  • (A) Maple syrup urine disease
  • (B) Hartnup disease
  • (C) Homocystinuia
  • (D) Phenylketonuria

 10. In glycinuria daily urinary excretion of glycine ranges from

  • (A) 100–200 mg
  • (B) 300–500 mg
  • (C) 600–1000 mg
  • (D) 1100–1400 mg

 11. An inborn error, maple syrup urine disease is due to deficiency of the enzyme:

  • (A) Isovaleryl-CoAhydrogenase
  • (B) Phenylalnine hydroxylase
  • (C) Adenosyl transferase
  • (D) α-Ketoacid decarboxylase

12. Maple syrup urine disease becomes evident in extra uterine life by the end of

  • (A) First week
  • (B) Second week
  • (C) Third week
  • (D) Fourth week

 13. Alkaptonuria occurs due to deficiency of the enzyme:

  • (A) Maleylacetoacetate isomerase
  • (B) Homogentisate oxidase
  • (C) p-Hydroxyphenylpyruvate hydroxylase
  • (D) Fumarylacetoacetate hydrolase

14. An important feature of maple syrup urine disease is

  • (A) Patient can not be treated by dietary regulation
  • (B) Without treatment death, of patient may occur by the end of second year of life
  • (C) Blood levels of leucine, isoleucine and serine are increased
  • (D) Excessive brain damage

 15. Ochronosis is an important finding of

  • (A) Tyrosinemia
  • (B) Tyrosinosis
  • (C) Alkaptonuria
  • (D) Richner Hanhart syndrome

16. Phrynoderma is a deficiency of

  • (A) Essential fatty acids
  • (B) Proteins
  • (C) Amino acids
  • (D) None of these

17. The percentage of linoleic acid in safflower oil is

  • (A) 73
  • (B) 57
  • (C) 40
  • (D) 15

18. The percentage of polyunsaturated fatty acids in soyabean oil is

  • (A) 62
  • (B) 10
  • (C) 3
  • (D) 2

 19. The percentage of polyunsaturated fatty acids in butter is

  • (A) 60
  • (B) 37
  • (C) 25
  • (D) 3

 20. Dietary fibre denotes

  • (A) Undigested proteins
  • (B) Plant cell components that cannot be digested by own enzymes
  • (C) All plant cell wall components
  • (D) All non digestible water insoluble polysaccharide

21. A high fibre diet is associated with reduced incidence of

  • (A) Cardiovascular disease
  • (B) C.N.S. disease
  • (C) Liver disease
  • (D) Skin disease

 22. Dietary fibres are rich in

  • (A) Cellulose
  • (B) Glycogen
  • (C) Starch
  • (D) Proteoglycans

 23. Minimum dietary fibre is found in

  • (A) Dried apricot
  • (B) Peas
  • (C) Bran
  • (D) Cornflakes

 24. A bland diet is recommended in

  • (A) Peptic ulcer
  • (B) Atherosclerosis
  • (C) Diabetes
  • (D) Liver disease

 25. A dietary deficiency in both the quantity and the quality of protein results in

  • (A) Kwashiorkar
  • (B) Marasmus
  • (C) Xerophtalmia
  • (D) Liver diseases

 26. The deficiency of both energy and protein causes

  • (A) Marasmus
  • (B) Kwashiorkar
  • (C) Diabetes
  • (D) Beri-beri

27. Kwashiorkar is characterized by

  • (A) Night blindness
  • (B) Edema
  • (C) Easy fracturability
  • (D) Xerophthalmia

28. A characteristic feature of Kwashiorkar is

  • (A) Fatty liver
  •  (B) Emaciation
  • (C) Low insulin lever
  • (D) Occurrence in less than 1 year infant

 29. A characteristic feature of marasmus is

  • (A) Severe hypoalbuminemia
  • (B) Normal epinephrine level
  •  (C) Mild muscle wasting
  •  (D) Low insulin and high cortisol level

 30. Obesity generally reflects excess intake of energy and is often associated with the development of 

  • (A) Nervousness
  • (B) Non-insulin dependent diabetes mellitus
  • (C) Hepatitis
  • (D) Colon cancer

31. Atherosclerosis and coronary heart diseases are associated with the diet:

  • (A) High in total fat and saturated fat
  • (B) Low in protein
  • (C) High in protein
  • (D) High in carbohydrate

32. Cerebrovasular disease and hypertension is associated with

  • (A) High calcium intake
  • (B) High salt intake
  • (C) Low calcium intake
  • (D) Low salt intake

33. The normal range of total serum bilirubin is

  • (A) 0.2–1.2 mg/100 ml
  • (B) 1.5–1.8 mg/100 ml
  • (C) 2.0–4.0 mg/100 ml
  • (D) Above 7.0 mg/100 ml

34. The normal range of direct reacting (conjugated) serum bilirubin is

  • (A) 0–0.1 mg/100 ml
  • (B) 0.1–0.4 mg/100 ml
  •  (C) 0.4–06 mg/100 ml
  • (D) 0.5–1 mg/100 ml

 35. The normal range of indirect (unconjugated) bilirubin in serum is

  •  (A) 0–0.1 mg/100 ml
  •  (B) 0.1–0.2 mg/100 ml
  • (C) 0.2–0.7 mg/100 ml
  • (D) 0.8–1.0 mg/100 ml

36. Jaundice is visible when serum bilirubin exceeds

  • (A) 0.5 mg/100 ml
  • (B) 0.8 mg/100 ml
  • (C) 1 mg/100 ml
  • (D) 2.4 mg/100 ml

 37. An increase in serum unconjugated bilirubin occurs in

  • (A) Hemolytic jaundice
  • (B) Obstructive jaundice
  •  (C) Nephritis
  • (D) Glomerulonephritis

 38. One of the causes of hemolytic jaundice is

  •  (A) G-6 phosphatase deficiency
  •  (B) Increased conjugated bilirubin
  • (C) Glucokinase deficiency
  • (D) Phosphoglucomutase deficiency

39. Increased urobilinogen in urine and absence of bilirubin in the urine suggests

  • (A) Obstructive jaundice
  • (B) Hemolytic jaundice
  • (C) Viral hepatitis
  • (D) Toxic jaundice

40. A jaundice in which serum alanine transaminase and alkaline phosphatase are normal is

  • (A) Hepatic jaundice
  • (B) Hemolytic jaundice
  • (C) Parenchymatous jaundice
  • (D) Obstructive Jaundice

41. Fecal stercobilinogen is increased in

  • (A) Hemolytic jaundice
  • (B) Hepatic jaundice
  • (C) Viral hepatitis
  • (D) Obstructive jaundice

 42. Fecal urobilinogen is increased in

  • (A) Hemolytic jaundice
  • (B) Obstruction of biliary duct
  • (C) Extrahepatic gall stones
  • (D) Enlarged lymphnodes

43. A mixture of conjugated and unconjugated bilirubin is found in the circulation in

  • (A) Hemolytic jaundice
  •  (B) Hepatic jaundice
  • (C) Obstructive jaundice
  • (D) Post hepatic jaundice

No comments