Biology MCQs with Answer (part 2) by General knowledge Solutions
Biology MCQs with Answer (part 2) by General knowledge Solutions
1. Clinical features of hyperthyroidism include
(A) Goitre, heat intolerance, weight loss and tachycardia
(B) Goitre, tremors, tachycardia and cold intolerance
(C) Exophthalmos, goiter, tachycardia and loss of appetite
(D) Exophthalmos, goiter, tremors and obesity
2. All the following may occur in hyperthyroidism except
(A) Goitre
(B) Increased appetite
(C) Loss of weight
(D) Low BMR
3. All the following
may occur in myxoedema except
(A) Cold intolerance
(B) Low BMR
(C) Tachycardia
(D) Dry and coarse
skin
4. Mental retardation
can occur in
(A) Cretinism
(B) Juvenile myxoedema
(C) Myxoedema
(D) Juvenile thyrotoxicosis
5. Parathyroid
hormone (PTH) is synthesised in
(A) Chief cells of parathyroid glands
(B) Oxyphil cells of parathyroid glands
(C) Para follicular cells of thyroid glands
(D) Follicular cells of thyroid gland
6. The number of amino acid residues in PTH:
(A) 51
(B) 84
(C) 90
(D) 115
7. Amino acid
residues which are essential for the biological activity of PTH are
(A) N-terminal 34 amino acids
(B) N-terminal 50 amino acids
(C) C-terminal 34 amino acids
(D) C-terminal 50 amino acids
8. Half-life of PTH
is
(A) A few seconds
(B) A few minutes
(C) A few hours
(D) A few days
9. The second
messenger for PTH is
(A) Cyclic AMP
(B) Cyclic GMP
(C) Diacylglycerol
(D) Inositol triphosphate
10. PTH causes all of
the following except
(A) Increased intestinal absorption of calcium
(B) Increased intestinal absorption of phosphate
(C) Increased tubular reabsorption of calcium
(D) Increased tubular reabsorption of phosphate
11. Secretion of PTH is regulated by
(A) Hypothalamus
(B) Anterior pituitary
(C) Feedback effect of plasma PTH
(D) Feedback effect of plasma calcium
12. A high
concentration of PTH in blood causes
(A) Increase in plasma calcium and inorganic phosphorous
(B) Decrease in plasma calcium and inorganic phosphorous
(C) Increase in plasma calcium and decrease in plasma
inorganic phosphorous
(D) Decrease in plasma calcium and increase in plasma
inorganic phosphorous
13. Tetany can occur
(A) In primary hyperparathyroidism
(B) In secondary hyperparathyroidism
(C) In idiopathic hypoparathyroidism
(D) After accidental removal of parathyroid glands
14. Crystallisation
of insulin occurs in the presence of
(A) Chromium
(B) Copper
(C) Zinc
(D) Calcium
15. Daily secretion of insulin is about δ–
(A) 10–20 mg
(B) 40–50 mg
(C) 10–20 units
(D) 40–50 units
16. Insulin receptors
are decreased in number in
(A) Obesity
(B) Starvation
(C) Hyperinsulinism
(D) Kwashiorkor
17. Insulin binding sites are present on the
(A) α-subunits of insulin receptor
(B) β-subunits of insulin receptor
(C) γ-subunits of insulin receptor
(D) α-and β−subunits of insulin receptor
18. α-Subunits of
insulin receptor are present
(A) Outside the cell membrane
(B) In the cell membrane
(C) Across the cell membrane
(D) In the cytosol
19. β-Subunits of insulin receptor are present
(A) Outside the cell membrane
(B) In the cell membrane
(C) Across the cell membrane
(D) In the cytosol
20. In the insulin receptor, tyrosine kinase domain is
present in
(A) α-Subunits
(B) β-Subunits
(C) γ-Subunits
(D) δ-Subunits
21. Binding of
insulin to its receptor activates
(A) Adenylate cyclase
(B) Guanylate cyclase
(C) Phospholipase C
(D) Tyrosine kinase
22. Insulin receptor is made up of
(A) One α-and one β-subunit
(B) Two α-and two β-subunit
(C) Two, α two β-and two γ-subunit
(D) One α, one β-one
γ-and one δ-subunit
23. Insulin is required for the active uptake of glucose by most of the
cells except
(A) Muscle cells
(B) Renal tubular cells
(C) Adipocytes
(D) Liver cells
24. Insulin decreases
(A) Glycogenesis
(B) Glyolysis
(C) Gluconeogenesis
(D) Tubular reabsorption of glucose
25. Insulin increases
(A) Glycogenesis
(B) Gluconeogenesis
(C) Lipolysis
(D) Blood glucose
26. Insulin increases
(A) Protein synthesis
(B) Fatty acid synthesis
(C) Glycogen synthesis
(D) All of these
27. Insulin decreases the synthesis of
(A) Hexokinase
(B) Glucokinase
(C) PEP carboxykinase
(D) Glycogen synthetase
28. Diabetes mellitus
can occur due to all of the following except
(A) Deficient insulin secretion
(B) Tumour of β−cells
(C) Decrease in number of insulin receptors
(D) Formation of insulin antibodies
29. Hypoglycaemic coma can occur
(A) In untreated diabetes mellitus
(B) In starvation
(C) After overdose of oral hypoglycaemic drugs
(D) After overdose of insulin
30. Second messenger for glucagons is
(A) Cyclic AMP
(B) Diacylglycerol
(C) Cyclic GMP
(D) Inositol triphosphate
31. Number of amino acid residues in glucagons is
(A) 29
(B) 34
(C) 51
(D) 84
32. Glucagon secretion increases
(A) After a carbohydrate-rich meal
(B) After a fat-rich meal
(C) When blood glucose is high
(D) When blood glucose is low
33. The maineffecting of glucagons is to increase
(A) Glycolysis in muscles
(B) Glycogenolysis in muscles
(C) Glycogenolysis in liver
(D) Glycogenesis in liver
34. Tyrosine is required for the synthesis of all of the following
except
(A) Melatonin
(B) Epinephrine
(C) Norepinephrine
(D) Thyroxine
35. Dopamine is
synthesised from
(A) Dihydroxyphenylalanine
(B) Epinephrine
(C) Norepinephrine
(D) Metanephrine
36. Blood brain
barrier can be crossed by
(A) Epinephrine
(B) Dopamine
(C) Dopa
(D) All of these
37. Epinephrine is
synthesised in
(A) Chromaffin cells of adrenal medulla
(B) Sympathetic ganglia
(C) Brain
(D) All of these
38. Immediate
precursor of epinephrine is
(A) Metanephrine
(B) Norepinephrine
(C) Dopa
(D) Dopamine
39. The chief
metabolite of catecholamines is
(A) Metanephrine
(B) Normetanephrine
(C) 3,
4-Dihydroxymandelic acid
(D) Vanillylmandelic acid
40. An enzyme
involved in catabolism of catecholamines is
(A) Dopa decarboxylase
(B) Aromatic amino acid decarboxylase
(C) Monoamine oxidase
(D) Catechol oxidas
41. Norepinephrine
binds mainly to
(A) α-Adrenergic receptors
(B) β-Adrenergic receptrors
(C) Muscarinic receptors
(D) Nicotinic receptors
42. Astimulatory
G-protein transduces the signals from
(A) α1-and β1-adrenergic receptors
(B) α2-and β2-adrenergic receptors
(C) α1-and α2-adrenergic receptors
(D) β1-and β2-adrenergic receptors
1. A 2. D 3. C 4. A 5. A 6. B 7. A 8. B 9. A 10. D 12. D 12.
C 13. D 14. C 15. D 16. A 17. A 18. A 1. C 20. B 21. D 22. B 23. D 24. C 25. A
26. D 27. C 28 B 29. D 30. A 31. A 32. D 33. C 34. A 35. A 36. C 37. D 38. B 39.
D .40 C 41. A 42. D
No comments